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The singularity appearing in this metric at r = rg is retained in the coefficient accom- 
panying cIR?:, 

Let us see what results can be obtained from a closed, isotropic Friedman’s model. 
Since r =- Q sin)! and R = 20,x, we easily obtain 

Knowing that P* = acos~, we have r‘ = rR = a (2&1~o~~. At the same time from 
YW = r‘s / (1 + f‘, ( remembering that f = - sinax ), we find e” r (CL / 20,)~. Substitu- 
ting the values for CT,., c$ and e* into (13) we have 

which is convenient e. g. for writing out the equations TF, k = 0 when two quasi-linear 

equations defining E and u can be obtained simultaneously. 
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The regular precessions of a heavy asymmetric gyrostat are found by direct 
integration of the system of Zhukovskii equations written in the principal axes 
of inertia. The properties of these motions are investigated ; the possibility of 
controlling them is revealed. Forces capable of causing a regular precession 
in the gyrostats are investigated. 

An idea was developed in [l] on the preferability of investigating the mo- 
tion of a heavy gyrostat fixed at one point before the investigation of the mo- 
tions of the classical rigid body (*) (see footnote on the next page). 
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Still earlier [2] an attempt at such an investigation was made for an asymmet- 
ric gyrostat by Grioli’s method and the dynamic possibility of regular preces- 

sions in such gyrostats was proved. Later on in [4] a solution of this problem 

was obtained in special nonprincipal axes of inertia, which was not written as a 

function of time. 

1. We consider a heavy gyrostat which has, for example, cavities filled with anideal 

incompressible liquid circulating with a gyrostatic moment b which is constant in abso- 
lute value. We assume that on the position of the gyrostat’s center of mass and on its 

principal moments of inertia the constraints 

rO1/B -. c = z,I/n - B, U” ~= 0, (‘4 - R) (B -- C) > 0 (1.1) 

are imposed. Geometrically they denote the disposition of,the gyrostat’s center of mass 
on the perpendicular to one of the circular cross sections of its ellipsoid of inertia for 
a fixed point. Furthermore, we assume that the gyrostatic moment h is directed along 

the barycentric axis, i. e. the axis carrying the gyrostat’s center of gravity (Fig. 1). Then, 
in projections onto the system’s moving axes, 

Under the constraints (1.1) adopted, with due regard to (1.2) the system of Zhukovskii 
differential equations are written as 

where M is the mass of the body of the carrier and of the liquid. The system of kine- 

matic equations remains as before. 
We multiply the first equation of (1.3) by F,,, the 

third by z,, , and we add them together. Keeping 

in mind the equalities obtained from (1.1) 

A _ B = k.x!,2, B - C = k:,” (1.4) 

A - C = h:12, E = kx,,s, (1 = r/x,” + zo2) 

where k is a constant having the dimension of mass, 
I is the distance of the gyrostat’s center of mass 
from the fixed point, we obtain 

Fig. 1 + (Ar,p + Ci,r) = IZ,Q (x,,p + 20~) q (1.5) 

To find the regular precessions of the heavy gyrostat we should assume [5. 61 

(1.0) = x,p + zor = const = 1,~ (1.6) 

*) Kharlamova, E. I., Algebraic invariant relations of the differential equations 
of rigid body dynamics. Doctorate Dissertation, 1971. 
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Using the result of differentiating (1.6) with respect to time, from Eq. (1.5) we obtain 

dp n,zi, rlr mz0 
dt =-jFq> x=-- 1 q 

Comparing these linear equations with the first and third equations of system (1.3), we 

find the equality 
p12y, = (Axop + Cz,r + 14 q (1.7) 

which serves as a condition for their equivalence. We shall use this relation below. 

Thus, when equality (1. ‘7) is observed, in what follows we examine a dynamic system of 
the form 

dp ,nz,, 
-ZZ - q1 B dq h 
dt 12 

- == (C - ii) pr -t 7 (zi,p - 2x) -t 
dt (1.8) 

P (%1(3- ZOTl), 
dr mz,, 

- = -7 q 
dt 

The quadratic integral 

p2 + q2 + r2 = const = a2 (1.9) 

must hold for regular precessions of the gyrostat. Using relation (1.6). we express q from 
(1.9) and we substitute it into the first equation of system (1.8). We obtain 

dp m 
- E - 

dt 
12 (z,,W - m2 + 2mZ,Ip - 12p2)‘iS 

An integration of this equation yields 72 
p = 1 (TO + z,;a sin nz) 

1 I/ 
m 

a’F 1 w - my ?2=--, 
1 

z = t - tn 

In the following we assume a = 1. With due regard to (1. lo), the angular velocity com- 
ponents q, r are found from relations (1.6), (1.9) without further integration. 

Thus, we obtain the following solution of the system of equations (1.8). defining the 

gyrostat’s angular velocity components (for a = 1): 

n 
q =: n cos nT (1.11) 

n 
r = -j- (ZO - x0 sin nr) 

These formulas in no way differ in form from the corresponding formulas describing the 

regular precession of an absolutely rigid body [S] under conditions (1.1). 

We pass on to the determination of the variables yi, y?, ys. The relation determining 
yz already exists in the form of (1.7). Let us obtain the relations connecting yi, ys. 
For this we differentiate the integral (1.9) with respect to time ; by virtue of system 
(1.7). we have 

$ (P2 + q2 + r2) = -&- qQ 
(1.12) 

Q = (Bm + Zh) (zap - zg) - (A - C) Ppr + @* (%Ys i z0y1) 

The right-hand side of equality (1.12) vanishes only for Q = 0; the vanishing of vari- 
able q is impossible because of solution (1.11). To obtain a second relation connecting 
yi, y3, we make use of the energy integral 

Ap2 + Bq2 + CT= + 2~ (%I% + zoy,) = 32 (1.13) 
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We note that integral (1.13) clearly does not depend upon the gyrostatic terms occurring 
in the equations of system (1.3). By solving the system of algebraic equations Q = 6 
and (1.13) with respect to yr, y3, we find 

1 
Tl=F{ 20 [W - + 13 (Ap2 + Bq” + Cra)] + 

. 
z. [pm + hl) (zap - xc) - (-4 - Cl laprl] 

1 
4 rs=III”, zg [IO - +- 12 (.‘I$ + Bq” + CG)] - 

x0 [pm + hl) (z,p - 2~) - (A - C) ~2pr]) 

Substituting the solution (1.11) we have found into these formulas and into (1.7). after 

a number of reductions, we obtain 

na 
x" n=-p- -z_ 

1 i 
+ -_(A + 0) I" j- z,P (C + +) sin nt- (A-C) 50232 co9 NT} (1.14) 

sinn~+(A-C)~,2z~C3Sant 1 

From these formulas we see that gyrostatic terms depending on the absolute value of 

moment a occur in their coefficients. Consequently, the dynamic characteristics on the 
internal cyclic motions in the gyrostat,influence the gyrostat’s rotation about the verti- 
cal axis. 

Let us refine formulas (1.14). To do this we substitute them into the kinematic equa- 
tions of system (1.3). This substitution leads to the necessity of accepting that the total 

mechanical energy of the gyrostat 

h = I/* (A + C) 9 

In final form solution (1.14) is written as 

T1= $r[(c+ $1 zu sin nZ - (B - C) 5" ~09 nt 1 (1.15) 

1” cos no’ + (A - C) X~ZJ sin nt CDS nz 
1 

73=~[-(A+%)x,sillnt1-(n-_B)z,cosrnr] (1.16) 

H = A - B + C, HP = Ax,,~ + Czoa 

We make one more computation connected with the determination of the position of 

the gyrostat’s fixed precession axis in space. If this axis is defined by the unit vector x0 

with components (x1, x2, x8) relative to the moving axes, then according to [S] the fol- 
lowing relation must hold : 

(0.26) = x,p + x,q + XQT = const = s 

The system of equations describing the rotation of the gyrostat relative to the fixed 

precession axis has the form 
dx,fdt = xzr - x,q, . . . (1, 2, 3) b, q7 r) 

Substituting formulas (1.11) here, we represent this system as 
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d%l 
-=- 

dl ; (z,, - ZJ sin nt) x2 - n ens ~~1x3 (1.17) 

dxa 
- = + [(Z” + clt e,, siu ?zZ) x3 - (z 1 - r,j sin nt) xl] 

k3 
- = n cos nT -f (q, $- -11 sin nt) x2 
(1 t 

Substituting formulas (1.11) into relation (1.16), we obtain 

+ x1 (0 + ZD sin ?LZ) + nr.2 cos nt + $x3 (z, - L,, sin nt) = s (1.18) 

Differentiating (1.18) with resoect to time, by virtue of system (1.17), we obtain 

(zOX1 - zOxg) cos nz - Ix, sin ILL = 0 (1.19) 

Consequently, in order for relation (1.18) to be an integral of system (1.17), it is neces- 
sary that the solution of this system satisfy Eq. (1.19) as well. 

Let us consider the system of equations, which is easily obtained from (1.18) and(l.19) 

(1.20) 

To eliminate its from these formulas we make use of the trivial integral xl5 -1. x2* $ 

x3 ’ = 1 of system (1 17). Substituting (1.20) into this integral, we obtain an equation . 

whose roots are 

%.’ ( 
+&J/Kg C,SIIT (1.21) 

Replacing x2 in formulas (1.20) by expressions (1.21), we have formulas for XI, x2, x3, 
the substitution of which into system (1.17) shows that they form a solution of this system 

if and only if we retain the plus sign in front of the radical and set s = n. We finally 
obtain 

x1: Isi,i rlt, 
TII 

I xa- co’; t1t , Y.~ = - - si.1 11t 1 (1.22) 

Hence it follows that, just as in the classical case of precession of an absolutely rigid 
body [5], the gyrostat rotates relative to the fixed precession axis. Comparing formulas 
(1.22) with (1.15), we conclude that if the gyrostat’s rotation relative to the vertical 
fixed axis depends on the gyrostatic terms, then its rotation relative to the fixed preces- 
sion axis, not coinciding with the vertical, clearly does not depend on the terms indicated 
and is accomplished exactly as if parts performing cyclic motions were not contained 
inside the gyrostat. 

Let us clarify certain kinematic characterisitcs of the motion being investigated. We 

consider the product of vectors (1.6). Substituting here the appropriate formulas from 

(1.11). we obtain 
(1.0) _= lOl = II1 = 2’ = rn = const (1.23) 
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Hence we see that the constant n is the angular velocity of the natural rotation of the 
gyrostat, while v is the linear velocity of the gyrostat’s center of mass in its precession 

motion around the fixed precession axis. It turns out that the magnitude of velocity n’ 

is an arbitrary quantity connected by a one-parameter relation with the gyrostatic mo- 
ment A. This relation is found by substituting formulas (1.15) into the trivial integral 

17,~ + yz2 + ya2 = 1 of system (1.3). We obtain 

n2h2 -j- 2Hn3k 4. (Hz + E2) n4 = p212 

For the gyrostatic moment h this equation yields 

h 192 
__ E”$ (1.24) 

The roots are real when p’~ > En2. It follows from (1.24) that the velocity of the gyro- 

stat’s natural rotation in formulas (1. ll), (1.15) proves to be an arbitrary constant. This 
is not so in the classical case of regular precession [5]. 

Let us now return to the previously-adopted assumption a = 1; using this value in 
(l.lO), we find Po2 = 2n?. Since m = In, we have w = 1/& / I = 1/%. 

We further determine the angular velocity of the gyrostat’s rotation around the fixed 

precession axis. By virtue of relation (1.18) and of formulas (1.22), we have s =n = tit 
in accordance with formula (1.23). We determine the angle a between ‘the axes of the 
natural rotation and of the precession of the gyrostat from the equality 

(1.x”) = cos cz = 5& + z,x, = 0 

Hence we conclude that cc = SI / 2. We determine further the angle p of the deviation 

of the gyrostat’s fixed precession axis from the vertical using the equality 

(x . &“) = cos p = ylxl + yzx.2 -t y3x3 

Substituting formulas (1.15) and (1.22) here, we obtain 

Finding li. from this and comparing the expression obtained with (1.24), we have 

(1.25) 

Fig. 2 

(1.26) 

From this formula we see that we cannot choose 
the deviation angle 8 to equal 0, n, otherwise 
the velocity II becomes zero. For deviation an- 
gles fi for which cos p > 0 or cos p < 0 (Fig. 2). 
the inequalities 

H i- hln > 0. H -t_ h/n < 0 (1.27) 

respectively, should be fulfilled according to for- 

mula (1.25). Their fulfillment imposes a restric- 
tion on the choice of the sign in front of the radi- 
cal in (1.26). 
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With due regard to formula (1.26) we rewrite equality (1.25) as 

h / n :- - H + E ctg f.3 

If 11 > 0, ctg fi > 0, H < E ctg fi, then h / n > 0 and the first inequality of (1.27) 

is satisfied. If n < 0, ctg 6 > 0, Ii > E ctg 6, then h / n < 0 and the first inequality 
again is satisfied. The second inequality of (1.27) is satisfied if n < 0, ctg fi < 0,in 
which case h / n < 0. Hence it follows that in the given case the cyclic motion in the 
gyrostat should be accomplished only in the direction opposite to the gyrostat’s natural 

rotation. If, in particular, the deviation angle 6 = n / 2, the gyrostat’s precession motion 

is performed around the horizontal axis. Here 

A= -Hn, n = k Jfpll E (1.28) 

follows from fornulas (1.25). (1.26). Thus, in this case cyclic motion in the gyrostat is 
possible both in the same as well as in the opposite direction as the gyrostat’s natural 

rotation around the barycentric axis. With due regard to equalities (1.28). formulas 
(1.15) have the form 

y1= - j$l(4 -B) z0 sin nz + (B - C) x0 co9 7271 

Y2 = $ (A - Cl rozo sin nt cos n7 

y3 = $ I- (B - C) cc0 sin nr + (A - B) 2” co9 xc] 

In such a motion of the gyrostat its center of gravity describes a circle in a vertical 
plane passing through the fixed point of the body.With due regard to (1.28) the linear 
velocity of this motion is 

2) = In L * 11/pl / B 

At first glance this motion seems to be strange, since here the accelerating and decele- 

rating actions of the force of gravity on the gyrostat are in fact excluded. We could 
show that such actions of the force of gravity on the gyrostat should be compensated by 
the gyroscopic moments as a consequence of the relative cyclic motions and of the 
natural transfer rotation of the gyrostat. These moments can be created only by the 
Coriolis forces of inertia and of translational motion. Therefore, the regular precession 
of the gyrostat proves to be of greater interest because of the possibility of controlling 

it. In fact, if this can happen for an absolutely rigid body [S] only for an angle 0 < 6 < 
.“I I 2 which is determined by the equality 

then it happens for the gyrostat for angles p determined by equality (1.25). i. e. within 

the limits U < 13 < n.Here the function (1.24) is the controlling function. 
The following result has emerged as a result of the analysis carried aut : the form of 

the gyrostat’s motion in space, determined by solutions (1.11). (1.22). turns out to be 
invariant just as in the classical case (Grioli). 

2. We investigate the gyrostat’s regular precession under the Lagrange conditions : 
A = u # C, Tg = ?J” = 0, y10 = 1, h, = h, = 0, h, = h. Then solutions (l.ll), (1.15) 
and (1.22) can be written as 



On regular precessions of a heavy gyrostat 711 

xi = sin n7, xa = cos ,L T, xa = 0 

where, in accordance with (1.24) and in view of E = 0 , 

P’ h =-Cnfy- (2.2) 

In the case under consideration the deviation angle p of the gyrostat’s precession axis 
from the vertical is determined by the equality 

n2 
cos p = yl”z + Y& = 7 (C + h / ,,) 

Finding h from this and comparing with (2.2), we are convinced that cos b == 1- 1, 
fi = 0, X. Consequently, the gyrostat’s regular precession, described by formulas (2. l), 
can be accomplished only around the vertical axis. The equalities 

Yl = Xl, A = x21 Ys = x3 

are fulfilled in this case. From them, with due regard to formulas (2.1). we obtain the 
one equation 

CrP + hn - Ill = 0 

revising the value of cos @ up to unity. By solving this relative to velocity n, we obtain 

- h + v/h’2 $4C/.Ll 
n= 2c (2.3) 

When h = 0 formulas (2. I), (2.3) describe regular precession in the classical case [S]. 

9, We investigate external forces capable of causing the regular precession of the 
gyrostat. It is well known fl] that a body fixed at one point and possessing an axis of 
kinetic symmetry, can accomplish regular precession if and only if the principal moment 
L, of the external forces relative to the fixed point 0 is constant in absolutevalue and 
is directed along the nodal line. let us ascertain whether this condition is satisfied in 
the case of a heavy asymmetric gyrostat. According to (1.3) we have 

dP 
Lx = .4 7 - (B - C) qr +- T hq 

n’rl h 
L,:=B,t; (:I - C) pr - - (ZllP - 5uT) 

1 

L =c& 
z 

pl-B)pq-+q 
Substituting here the values of p, (I, r from (1. ll), with due regard to (1.4), we obtain 

(3.1) 
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Using (3.1) we find the absolute value of the moment of the external forces 

to = V/L,” + Ly= + Lz 2 =q/-(EzI_y+E'c"s~nr 

As we see, the moment Lo is not constant. But under the Lagrange conditions it does 

prove to be constant. The principal moment J_, should lie in the horizontal plane since 

it is created by a unique force, namely, the force of gravity applied to the body 

(I.,’ 5”) = Lcyl -!- L,y, + &y, = 0 

As a consequence of the gyrostat’s rotation around the fixed precession axis with velo- 

city n = 01, the principal moment 1, precesses in the horizontal plane with the velo- 
City 

O,COS,8~~ - ;; H-)-_$ 
( 1. 

According to p], for the principal moment Lo to coincide with the nodal line it is 

necessary that the projections L,, L,, Lz be expressed in terms of the Euler angles in 
the following manner : 

L, = Lo cos cp, L, = - Lo sin cp, L, = L, cos; = 0 

According to (3.1), I,* # 0. Consequently, in the given case the principal moment is 

not located along the nodal line in the horizontal plane. B&in the case of gyrostat 
precession under the Lagrange conditions this requirement is fulfilled since L, = 0. 
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